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ABSTRACT: A 2-phosphabicyclo[2.2.2]oct-7-ene ox-
ide (2) and a 2-phosphabicyclo[2.2.2]octa-5,7-diene
oxide (3) with ethyl substituent on the phosphorus
atom was synthesized and their fragmentation prop-
erties were studied. The phosphabicyclooctadiene ox-
ide (3) could be utilized in both the UV light-mediated
phosphorylation of simple alcohols and in the ther-
moinduced phosphorylation of hydroquinone giving
an easy access to P-ethylphosphinates (e.g., 4 and 6).
The phosphabicyclooctene oxide (2) was, however,
not useful in photoinduced phosphorylations; under
such conditions the precursor (2) underwent dechlo-
rination to afford 5. C© 2005 Wiley Periodicals, Inc.
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INTRODUCTION

The bridged P-heterocycles, such as the 2-phos-
phabicyclo[2.2.2]octadiene 2-oxides/sulfides can be
regarded as precursors of methylenephosphine ox-
ides/sulfides YP(X)CH2, where X = O, S, Y = phenyl,
alkoxy. The latter are novel phosphorylating agents
toward a variety of nucleophiles, such as alcohols,
phenols, and amines [1,2]. The reaction can be
achieved either thermally [3], or under photochem-
ical conditions [4–6]. In the latter instance, a novel
addition-elimination mechanism was substantiated
to be a competitive pathway [5–7] in addition to
the traditional elimination–addition route involv-
ing methylenephosphine oxide as the intermediate
[4]. The fragmentation-related phosphorylations are
of interest, as they require mild reaction condi-
tions, especially those accomplished under photo-
chemical conditions, (26◦C and an irradiation of
only several hours) and take place efficiently and
in a selective way [5,6,8]. During our efforts to
find suitable precursors and to evaluate the mech-
anism of the fragmentations, a series of novel phos-
phabicyclooctene derivatives were described [9–11].
To extend the sphere of the precursors available,
bridged P-heterocycles with ethyl substituent on
the phosphorus atom are introduced and their
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fragmentation properties are described in the
present paper.

RESULTS AND DISCUSSION

Double-bond isomers of the 1-ethyl-1,2-dihydro-
phosphinine oxide (1A and 1B) [12] were reacted
with N-phenylmaleimide in boiling toluene to give
phosphabicyclo[2.2.2]octene oxide 2 as the mix-
ture of regioisomers (A and B) (Scheme 1). Sim-
ilarly, Diels–Alder reaction of the mixture of 1A
and 1B with dimethyl acetylenedicarboxylate af-
forded the regioisomers (A and B) of phosphabicy-
clo[2.2.2.]octadiene oxide 3. In this instance, regioi-
somers A and B consisted of configurational isomers
(Scheme 1).

The crude products 2 and 3 were purified by col-
umn chromatography to provide the cycloadducts 2
and 3 in 74% and 54%, yield, respectively. Isomers of
the products 2 and 3 were characterized by 31P, 13C,
and 1H NMR, as well as mass spectrometry.

Thermal examinations (TG, DTG, and DSC) sug-
gested that phosphabicyclooctene oxide 2 under-
went the elimination of the bridging P-moiety in the
range of 270–430◦C, with a minimum in the DSC
at 380◦C. This revealed a considerably larger ther-
mostability, as compared to that of phosphabicy-
clooctadiene oxide 3 eliminating the bridging unit
in the range of 190–320◦C with a minimum in the
DSC at 257◦C. Due to their more strained ring, the
phosphabicyclooctadiene oxides of type 3 are indeed
thermally less stable [13,14].

In the next stage of our work, we tested the new
precursors 2 and 3 in fragmentation-related phos-
phorylations. Irradiation of the acetonitrile solution
of phosphabicyclooctadiene oxide 3 at 254 nm in the
presence of methanol or ethanol at 26◦C yielded the

SCHEME 1

corresponding P-ethyl phosphinates 4a and 4b, re-
spectively in ca. 71% yield and in a purity of ca. 95%
after flash column chromatography (Scheme 2).

Photolysis of phosphabicyclooctene oxide 2 un-
der similar conditions using methanol did not give,
however, the expected phosphinate 4a. Only traces
of the desired product 4a could be detected. In-
stead, precursor 2 underwent dechlorination to fur-
nish phosphabicyclooctene oxide 5 (Scheme 3).

Like cycloadduct 2, compound 5 formed also did
not eliminate the bridging P-unit. The unreactivity of
phosphabicyclooctene oxides 2 and 5 is surprising,
as on the basis of the UV absorption they should be
suitable precursors. The UV spectrum of cycloadduct
2 showed an intensive absorption in the range of
∼220–270 nm with a maximum at 252 nm that is
similar to the spectrum of the P-phenyl analogue re-
vealing a maximum at 254 nm.

Phosphabicyclooctadiene oxide 3 was also use-
ful in the thermo-induced phosphorylation of hydro-
quinone. Heating the mixture of 3 and the hydroxy-
compound at 240◦C for 10 min led to phosphinate 6
in 64% yield and in a purity of 94% after flash col-
umn chromatography (Scheme 4). Carrying out the
fragmentation-related phosphorylation under mi-
crowave conditions, the reaction was more efficient
(72% yield), and the product (6) was cleaner (98%).
Phosphinates 4a, 4b, and 6 were characterized by
31P NMR and mass spectrometrical data. Mass spec-
tral data were obtained by GC-MS.

To summarize the results, two new phosphabi-
cyclo[2.2.2]octene derivatives with ethyl substituent
at the phosphorus atom were introduced and
tested in thermoinduced and UV light-mediated
fragmentation-related phosphorylations. Hence, our
methodology has now been extended to P-ethyl
model compounds.

EXPERIMENTAL

The 31P, 13C, and 1H NMR spectra were recorded
on a Bruker DRX-500 spectrometer operating at
202.4, 125.7, and 500 MHz, respectively. Chemi-
cal shifts are downfield relative to 85% H3PO4 or
TMS. The couplings are given in Hz. GC-MS was
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SCHEME 3

performed on a Fisons GC 8000/MD 800 appara-
tus connecting a PE SCIEX API 2000 type triple
quadrupol mass spectrometer. FAB mass spectrom-
etry was performed on a ZAB-2SEQ instrument. The
ethyl-dihydrophosphinine oxides (1A and 1B) were
prepared as described earlier [12].

General Procedure for the Synthesis
of Cycloadducts 2 and 3

The mixture of 1.0 g (5.25 mmol) of ethyl-dihydro-
phosphinine oxide 1 consisting of 75% of the A iso-
mer and 25% of the B isomer and 5.78 mmol of the
dienophile (1.0 g of N-phenylmaleimide or 0.72 mL
of dimethylacetylene dicarboxylate) in 25 mL of
toluene was stirred at the boiling point for 5 days.
Solvent was evaporated, and the residue so obtained
was purified by column chromatography (silica gel,
3% methanol in chloroform) to furnish cycloadduct
2 and 3, respectively, as the mixture of isomers. The
data are listed below.

1- and 11-Methyl-10-chloro-4-phenyl-8-ethyl-4-
aza-8-phosphatricyclo[5.2.2.02,6]undec-10-ene-
3,5-dione 8-oxide (2A and 2B) [15]

Yield: 1.4 g (74%) of 2 as a 6:4 mixture of isomers
A and B; mp 257–259◦C (acetone); FAB-MS, 364
(M + H); (M + H)+

found = 364.0869, C18H20ClNO3P re-
quires 364.0806 for the 35Cl isotopomer.

2A: 31P NMR (CDCl3) δ 51.8; 13C NMR (CDCl3)
δ 5.1 (2 J = 5.3, CH2CH3), 21.4 (1 J = 70.9, CH2CH3),
23.3 (3 J = 10.3, C(4) CH3), 34.8 (1 J = 70.3, C(3)),
58.7 (1 J = 36.6, C(1)), 38.9 (C(7)), 43.8 (2 J = 6.1,
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C(4)), 49.2 (2 J = 10.1, C(8)), 121.8 (2 J = 5.0, C(6),
126.3 (C(3′)),∗ 128.6 (C(4′)), 128.9 (C(2′)),∗ 131.4
(C(1′)), 139.5 (3 J = 10.8 C(5)), 173.9 (C(9)), 175.9
(3 J = 14.1, C(11)), ∗ may be reversed; 1H NMR
(CDCl3) δ 2.38 (m, CH2CH3), 2.85 (s, C(4) CH3), 7.27
(dd, 3 JPH =3 JHH7.7, C(6) H).

2B: 31P NMR (CDCl3) δ 58.7; 13C NMR (CDCl3) δ
5.1 (2 J = 5.3, CH2CH3), 18.3 (C(6) CH3), 21.3 (1 J =
69.8, CH2CH3), 26.4 (1 J = 71.9, C(3)), 39.7 (C(7)),
41.6 (1 J = 58.2, C(1)), 42.5 (2 J = 6.9, C(4)), 45.0
(2 J = 11.9, C(8)), 126.2 (C(3′)),∗ 139.5 (3 J = 11.0,
C(5)), 128.7 (C(4′)), 129.0 (C(2′)),∗ 129.8 (2 J = 5.0,
C(6)), 131.4 (C( 1′)), 175.1 (C(9)), 176.1 (3 J = 13.8,
C(11)), ∗ may be reversed; 1H NMR (CDCl3) δ 2.38
(m, CH2CH3), 2.99 (s, C(6) CH3).

4- and 7-Methyl-8-chloro-2-ethyl-2-oxo-2-
phosphabicyclo[2.2.2]octa-5,7-diene-5,6-
dicarboxylic Acid Dimethyl Ester (3) [15]

Yield: 0.94 g (54%) oily product after repeated chro-
matography (silica gel, 3% methanol in chloroform)
as a 32%, 29%, 25%, and 14% mixture of four
isomers; FAB-MS, 333 (M + H); (M + H)+

found =
333.0658, C14H19ClO5P requires 333.0601 for the 35Cl
isotopomer.

3A-1: 31P NMR (CDCl3) δ 58.9 (32%); 13C NMR
(CDCl3) δ 5.6 (CH2CH3)a, 19.7 (J = 9.4, C(4) CH3)b,
30.8 (J = 89.8, CH2)c, 34.0 (J = 109.9, C(3))d, 41.5
(J = 46.8, C(1))e, 47.0 (J = 8.3, C(4))f, 52.4g, 52.3g

(MeO), 124.2 (J = 11.5, C(6))h, 136.4 (J = 5.7, C(7))i,
138.3 (J = 19.2, C(8))j, 162.2 (J = 4.6, C(10))k, 164.3
(C(9))l.

3A-2: 31P NMR (CDCl3) δ 59.6 (29%); 13C NMR
(CDCl3) δ 5.5 (CH2CH3)a, 19.6 (J = 8.7, C(4) CH3)b,
30.3 (J = 89.6, CH2)c, 33.5 (J = 103.5, C(3))d, 41.2
(J = 46.9, C(1))e, 46.5 (J = 8.2, C(4))f, 51.9g, 52.0g

(MeO), 123.9 (J = 6.8, C(6))h, 134.6 (J = 6.3, C(7))i,
139.4 (J = 18.6, C(8))j, 163.9 (C(9))l, 165.6 (J = 3.2,
C(10))k, a–l tentative assignment.

3B-1: 31P NMR (CDCl3) δ 55.3 (25%); 13C NMR
(CDCl3) δ 5.7 (CH2CH3), 18.1 (C(6) CH3), 48.2 (J =
46.1, C(1)), 45.0 (J = 8.9, C(4)), 52.2, 52.4 (MeO),
130.9 (J = 10.9, C(6)), 132.0 (C(7)), 139.7 (J = 16.3,
C(8)).

3B-2: 31P NMR (CDCl3) δ 55.5 (14%).

General Procedure for the Photoinduced
Fragmentation-Related Phosphorylations

The solution of 0.10 g (0.301 mmol) of precursor 3 as
a 32, 29, 25, and 14% mixture of isomers (obtained as
shown above) in 45 mL of dry acetonitrile was irradi-
ated in the presence of 4.0 mL of the corresponding
alcohol (methanol or ethanol) in a photochemical
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quartz reactor with a 125 W mercury lamp for 2 h.
Volatile components were removed, and the residue
so obtained purified by flash column chromatogra-
phy (silica gel, 3% methanol in chloroform) to give
the corresponding phosphinic esters (4a and 4b) as
oils in a purity of ca. 95%.

4a was obtained in the presence of methanol;
yield: 74%; 31P NMR (CDCl3) δ 59.0; ES-MS, 123
(M + H); HR-FAB (M + H)+

found = 123.0555, C4H11O2P
requires 123.0575; GC-MS, m/z (rel. int.) 122 (M+,
28), 107 (22), 94 (100), 91 (5), 79 (87), 59 (61).

4b was obtained in the presence of ethanol;
yield: 69%; 31P NMR (CDCl3) δ 57.4; ES-MS, 137
(M + H); HR-EI M+

found = 136.0632, C5H13O2P re-
quires 136.0653; GC-MS, m/z (rel. int.) 136 (M+, 70),
135 (100), 107 (17), 92 (14), 77 (30).

Photolysis of phosphabicyclooctene regioiso-
mers 2A and 2B under similar conditions in the
presence of methanol led to the dechlorinated deriva-
tive of precursor 5. After an irradiation time of 75
min, the conversion was found to be 53%. 31P NMR
(CDCl3) δ 55.2; FAB-MS, 330 (M + H).

Thermoinduced Fragmentation-Related
Phosphorylation of Hydroquinone Using
Phosphabicyclooctadiene 3

0.20 g (0.60 mmol) of cycloadduct 3 as the mixture of
four isomers and 0.20 g (1.8 mmol) of hydroquinone
was heated at 240◦C in a vial for 10 min. Flash col-
umn chromatography (silica gel, 3% methanol in
chloroform) afforded 7.7 mg (64%) phosphinate 6
in a purity of ca. 94%. 31P NMR (CDCl3) δ 59.3; FAB-
MS, 201 (M + H); HR-FAB (M + H)+

found = 201.0647,
C9H13O3P requires 201.0681; GC-MS, m/z (rel. int.)
200 (M+, 100), 185 (1), 172 (12), 171 (10), 157 (37),
110 (80), 107 (57), 91 (51).

Microwave-Assisted Fragmentation-Related
Phosphorylation of Hydroquinone Using
Phosphabicyclooctadiene 3

A mixture of cycloadduct 3 (0.10 g, 0.30 mmol) and
0.10 g (0.9 mmol) of hydroquinone in a glass vial
was placed into a focused 300 W CEM Discover mi-
crowave reactor, and the sample was heated at 240◦C
for 10 min with a power of 35 W in the stacioner
stage. Flash column chromatography (silica gel, 3%
methanol in chloroform) afforded 8.6 mg (72%)
phosphinate 6 in a purity of ca. 98%.

ACKNOWLEDGMENTS

We are grateful to Andrea Márton (Department
of Organic Chemical Technology) for carrying out
the thermal examinations and to Zoltán Nagy
(Gedeon Richter Ltd.) for performing the GC-MS
measurements.

REFERENCES

[1] Heydt, H. Methyleneimino, -oxo, -thioxo, and
-selenoxo phosphoranes. In Multiple Bonds and Low
Coordination in Phosphorus Chemistry; Regitz, M.;
Scherer, O. J. (Eds.); G. Thieme Verlag: Stuttgart,
1990; Ch. E2, p. 381.

[2] Keglevich, Gy.; Szelke, H.; Kovács J. Curr Org Synth
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